

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS

SECOND SEMESTER - APRIL 2014

PH 2810 - MICROPROCESSOR \& MICRO CONTROLLERS

Date : 28/03/2014
Dept. No. \square Max. : 100 Marks

Part - A

Answer ALL Questions.

1. Write a note on the PSW of $\mu \mathrm{P} 8086$.
2. Explain when the queue of $\mu \mathrm{P} 8086$ will get flushed.
3. Develop a program segment for $\mu \mathrm{P} 8086$ to complement the content of memory locations with offsets 100 h with respect to ES.
4. Write a note on 'REG' field in the instructions of $\mu \mathrm{P} 8086$.
5. Develop a program for $\mu \mathrm{P} 8086$ to exchange the nibbles of the number in AL.
6. Write a note on the $D T / \bar{R}$ signal of $\mu \mathrm{P} 8086$.
7. Define a macro which stores in $A X$ the square of a number in AL.
8. State the differences between the LOOP and LOOPNE instructions.
9. Write a note on the stack pointer of $\mu \mathrm{C} 8051$.
10. Develop a program for $\mu \mathrm{C} 8051$ to exchange the contents of R 7 of Bank0 and R1 of Bank1.
Part - B

Answer any FOUR.
11. Two byte arrays hold the marks scored by n students in Mechanics and Optics respectively. If a student has scored 50 or above in both the subjects, the result for the student should stored as a ' 1 ' in the third array, indicating promotion. Otherwise a ' 0 ' should be stored in the third array. Develop an ASM program for $\mu \mathrm{P} 8086$.
12. Develop an ASM86 program to convert a two digit packed BCD number in memory to binary format and store it in memory.
13. Develop an ASM program for $\mu \mathrm{P} 8086$ to exchange the contents of two byte arrays.
14. With a block diagram discuss bus buffering and latching in $\mu \mathrm{P} 8086$ operated in maximum mode.
15. With a neat diagram, discuss the internal architecture of $\mu \mathrm{C} 8051$.
Part - C

Answer any FOUR.
16. Develop an ASM program for 8086 to solve $a=\sqrt{b}+\sqrt{c}-\sqrt{d}$, by defining a procedure for square root. Use relative indexed mode of addressing for data.
17. Develop a suitable interface and program for 8086 to implement 8-bit A/D conversion with 8086 simulating a binary counter.
18. Develop an ASM program for $\mu \mathrm{P} 8086$ to sort a byte array in ascending order.
19. Explain with neat block diagrams, the process states and the implementation of the ready queue in iRMX86.
20. Eight LEDs and a switch are connected to the Ports P2 and P3 of $\mu \mathrm{C} 8051$. Develop an ASM program to make the LEDs glow in binary descending order if the switch is ON and all LEDs to blink if the switch is ON.

